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STUDY OF PRACTICAL STABILITY PROBLEMS BY NUMERICAL METHODS 

AND OPTIMIZATION OF BEAM DYNAMICS* 

F.G. GARASHCHENKO 

The problem of the practical stability (PS) of motion, which generalizes 
the well-known statement of Chetayev @.,A,-&, T)-stability, is considered. 
For linear systems, criteria for the optimal estimation of PS conditions 
are obtained. The new concept of directional stability is used to devise 
algorithms for obtaining extremal sets of stability. The problem of 
maximizing the PS domain is formulated. The problems of structural 
parametric optimization of discontinuous dynamic systems, and of maximiz- 
ing the maximum function with respect to the initial data and the in- 
dependent variable, are studied. The algorithms of PS and parametric 
optimizationareusedtoformulate approachestotheoptimaldesignofacceler- 
ationandfocussingsystems. Thepresentpaperdiffers fromexistingwork on 
the stability of motion in a finite time interval /l, 2/ in that a 
numerical approach to the study PS is developed on the basis of the 
results obtained in /3-5/. 

1. Numerical studies of practical stability. We consider in the space of the 
n-dimensional state vector z the sets U)t and C,,which contain the interior points z(t) ~0, 
and the system of equations 

5' = f (5, t), f (0, t) = 0, t E It,, Tl (1.1) 

(the dot denotes the derivative with respect to time). 
We assuming that the vector function f&t) satisfies the conditions of the existence 

and uniqueness theorem. 

Definition 1.1. !cheunperturbedSOlUtiOn x(t)= 0 of system (1.1) is called {C,, Qt, t,, 
T&stable if it follows from the initial conditions s(t,)eCO for its trajectories that 

x (t) E a+, t E rto, Tl. 
Aiong with (1.1) we consider the system of differential equations with constantlyoperating 

perturbations (RR is the domain of admissible perturbations) 

x' = f (2, t) + R (I, t), R (2, t) E QR (1.2) 
Definition 1.2. The unperturbed solution x(t)=0 of system (1.1) is called {C,,@t, 2,, 

T, &)-stable under constantly operating perturbations if x(t)= @'t (tf? It,,, 7'1) for any 
x (to) E Co and R (x, 4 E !A. 

Theorems on PS in the sense of the above definitions are given in /3/. An important point 
when stating the PS criteria is to prove the existence of Lyapunov functions which satisfy 
the conditions of the appropriate theorems. Let C, = {I: W(x)< I}, whereW(x)is a continuously 
differentiable positive definite function whose level lines W(x) = c (O<c< 1) are closed. 

Theorem 1 .l. The necessary and sufficient condition for the unperturbed solution x(t)= 
0 of system (1.1) to be {C,,,UJ~,~,,, T) -stable is that there exist a positive definite Lyapunov 
function V(x,t) which satisfies the conditions 

{x: v (x, t) < 1) c @‘1, t E It,. T1 (1.3) 

(-qq1.,,<07 x E (x : v (x, 1) < I), t E tto, Tl (1.4) 

c,c+: V(z,t0)<1) (1.5) 

The sufficient conditions of the theorem are proved along the lines given in /3/. 
The necessity is proved with the aid of the function 

v (5, t) = w ((p (x. t, to)). x (to) = cp (x (t), t, to) 

This function V(x,t) is positive definite, since V(0, t) = 0, V(x, t) > 0 for I( 511 # 0 in 
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[to, Tl because the solution of system (1.1) is unique. Since V(x,t) is constant along 
trajectories of the system we have (dV (x, t)/dt),,~,, = 0, t E [to, I’]. We prove inclusion (1.3) by 
reductio ad absurdum, /5/. Condition (1.5) holds because {I: W(z) <l) ==(x: V(x,t,,)<l). 

To construct numerically optimal estimates with the aid of the theorem, we.consider two 
classes of sets /3/ 

CD&,=(x: Iz,*(t)xI~l,s=l,2,...,N) (1.6) 

@, AY, = (5: $(x, t)Q 1) (1.7) 

and the linear non-stationary system 

5' = A (t) x + f (t), t E k,, Tl 

with any perturbations that satisfy the condition 

(1.8) 

(1.9) 

We assume that the n-dimensional vectors l,(t) (TV [t,, 2’1; s = 1,2,.. -,N) are piecewise- 
continuous functions of t, that the set Ye contains the interior point x (t)=O, and is 
convex and compact for any t Eh T1; Yyt’ = {I: *(X3 t) = 1) is the boundary of the set I,; 
$(x,t) is a continuous function of its arguments along with the partial derivatives with 
respect to the components of the vector x;the asterisk denotes transposition. 

Let CO = {x: x*Bx< c*}, B be a positive definite symmetric matrix. 

Criterion 1.1. The necessary and sufficient condition for {C~,rt,tor T, QR}-stability 
of system (1.8) is 

cz -< min (1 -as w 
tz[t., T] sdy.., y Is* (t) Q (4 ls (0 (1.10) 

as (4 < 1, t E [to, T], s = 1, 2, . . ., N 

Criterian 1.2. The necessary and sufficient condition for {C,,,Yt, tO, T, Qa}-stability 
of system (1.8) is 

t*< min min 
IL?* (%l) .z - "; @)I* 

tEct., Tl &P*’ g* (2, t) Q (0 g (2, t) 
(1.11) 

g* (21-t) 3 > az (t), z E Yt’, t E it,,, Tl 

Here, Q(t)is a positive definite symmetric matrix which is the solution of the Cauchyl 
Droblem 

Q’ (t) = A (4 Q (4 + Q W A* (C Q (to) = B-’ 

a;(t) = I? ({ (i I,$ Xi,@, z) gi (2, t) 14)*1’* dr)“4’ 

(1.12) 

l/p + l/q = 1, lip, + I/& = 1, g (2, t) = {gi (3, t)$L = 

grad& (z, 0 

a.(t) is obtained from ai (t) by replacing the vector g (G t) by L (t),@,, (t, z))& = X (t, 4 

are the elements of the fundamental matrix , normalized with respect to 7,corresp~nding to 
the homogeneous system (1.8). 

Let us state the criterion for stability of the system 

I' = A (t) (x + fa (t)) i- fl (t), t E [to, Tl 

under perturbations fl(t), f*(t) and initial conditions x(tJ of the domain 

(1.13) 

c, (t) = {x (&A fi (% f, (t) : I* (to) Bx (43) + 
f 
s IfI* (t) c1 (T) f, (.c) + fz* (T) G (4 f, @)I c-h < c2) 
t” 

where B, C, (t), C, (t) are symmetric positive definite matrices. 
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Criterion 1.3. The necessary and sufficient condition for {C,(t), r,, t,, T}-stability 
of system (1.13) is 

c2< min tGIC,Tl,l+ft,,N [k*(t) QI(O 1, (W' (1.14) 

where the matrix Q1(t) is the solution of the Cauchy problem 

Q1' (4 = A (t) Q1 (t) + Q1 (4 A* (t) + C,-’ (t) +A (4 G-’ (4 A* (t), Q1 (to) = B-’ (1.15) 

A similar criterion holds for a set of type (1.7). 

2. Construction of extremal domains of stability and their optimization. 
When computing numerically the domains of particle capture in the acceleration mode, the 
problem arises of finding the entire set of initial conditions under which the trajectories 
do not leave given sets of phase space. To solve this problem, it is best to Introduce the 
concept of stability with respect to the n-dimensional direction l(II 111 = 1) at the instant 
t = to. This directional stability can be defined either in the small (in Lyapunov's sense) 
or in the finite sense. We shall dwell on the latter, since numerical algorithmsandspecific 
estimates will be considered. 

Definition 2.1. The unperturbed solution 
stable if z(t)E @t(t E [to, TU 

s(t)= 0 of system (1.1) is {k 1, @t, t,, T)- 
for any initial conditions x (to) = k,l, 0 <k, < k- 

This definition is a specific form of the familiar concepts of partial stability and 
jointly with it, enables constructive approaches to be devised for solving the above problems. 
For this reason, we shall not dwell on the statement and proof of general theorems on direc- 
tional stabilitybut merely quote some criteria. 

Criterion 2.1. The necessary and sufficient condition for {k, l,rt,tO, T)-stability of 
system (1.8) is 

k<z(l)= min min 
1 - I 1; @I = (0 I 

tE[t.. r,s=1,*,.... N I 22 @I x (h to) 1 I 
(2.1) 

ih*(t)a(t)j<j, s=1,2,. ..,N, tcz[t,,T] 

Criterion 2.2. The necessary and sufficient condition for {k,l,@t,t,,, T) -stability of 
system (1.8) is 

(2.2) 

g* (2, t) (2 - a (t)) > 0, g* (3, t) z > 0, z E I,‘, t E [to, T] 

Criterion 2.3. The necessary and sufficient condition for system (1.8) to be {k,l,@t,t,, 
T}-stable in sets (1.61, (1.7) under perturbations that satisfy (1.9) is one of the following: 

a, (t) < 1, s = 1, 2, . . .) N, t E [to, Tl 

(2.3) 

(2.4) 

The extremal set of stability can be written as 

C$““’ = (20 = k,E: 0 <k, Q E (1), VZ (11 Zll = 1)) (2.5) 

3. Structural parametric optimization of beam dynamics. These optimization 
problems are difficult in practicebecause they are min-max problems, their operation is 
specified over a long time interval, and to model the trajectories we have to find the accel- 
eration and focussing fields from the relevant Maxwell's equations /3, 6-B/. Here we propose 
devices for structurally representing the fields in the acceleration and focussing systems, 
so that the optimization problem can be reduced to a finite form. This means that we can 
not only simplify the acceleration and focussing system optimization problem, but can perform 
the optimization in realizable structures. 
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We know 17, 8/ that the particle 
direction on entering and leaving the 
of minimizing the quality criterion 

velocity in the rectangular accelerating field changes 
drift tube. In view of this, we consider the problem 

min ~(~(~)) 
sac, 

(3.1) 

on the trajectories of the system of differential equations 

5' = f(i) (I, t, a), x (to) = x (to + 0) = 50 

ti* < t < tj, i = I, 2, t . _, N + 1 (tjV+, = T) 

under the conditions 

(3.2) 

3 (ti + U) = @* (5 (tj - O), ti, U), i = 1, 2, . . ., N (3.3) 

ti =,r+~~ (a), i = 1, 2, . . ., N (3.4) 

Here, t, are the switching points at which the n-dimensional state vector x has the 
jumps (3.31, x(ti +0),x@, -0) are the values of x(t) to the right and left of the point 
&, f'" (x, t, a) and Cg,(x, t,a) are n-dimensional vector functions , continuous with respect to 
their arguments along with the partial derivatives with respect to x,a and x, b, a re- 
spectively, a is an r-dimensional vector of the optimized parameters, cpl (a) are continuously 
differentiable functions of a, and &is the domain of admissible values of the parameter a. 

Problem (3.1) can be solved in accordance with the iterative scheme /9/ 

a('+*) = PC, (a(i) -piC (c&j)), i = 0, 1, 2, . . . (3.5) 

where PC,(*) is the operation of projection onto the set C,,pr is a sequence of positive 

numbers that satisfy the convergence condition /9[, c&EC, is the initial approximation, 
and the components of the vector gradient C(a(*)) are calculated from the relation 

(3 -6) 

j”) (3 (t. - 01, t,, a(*?) - fwl) (2 (t, -t. 0), t,, a@)) + 
aqtl (3 (f, - 0). f,, a(‘) ) 

1 

aep (a@)) 
at L+ 

aQI* (P (t -O), ts, a”‘) t 
% I - aai 

j = 1, 2, . . ., r 

Here, q(t) is a piecewise differentiable vector function of dimensionality n, which is 
the solution of the boundary value problem 

4' = -(&@' (z (t), t, aqlkc)*zl, 
ts-1 < t < t,, s = 1, 2, . . .) N + 1, 9 (T) = -grad,@(x (2')) 

(3.7) 

with d&continuities at the switching points 

9 (8, - 0) = (&R,, (Z (t. - O), t,, a(i))/&)* 11 (tS + O), s = I,% . . ., N (3.5) 

and z(t). is the solution of system (3.2) corresponding to the parameter a('). 
L.etM;be a compact set of the space of the state vector. we consider the optimization 

oroblem 

on the trajectories of the system of differential equations 

x' = f (x, t, a), t E [to, TJ (3.10) 

on the assumption that the vector function f(x,t,af is continuous with respect to its 
arguments along with the partial derivatives with respect to the components of the vectors 
x1 a. 

The function I(a differentiable at any point a E Ca with respect to any direction 
provided that the function (D(x (t,s,, a)) is differentiable with respect to the components of 



the vector a in the open set I&'=, C, /lO, 11/. If c(O) is the solution of 
then the necessary condition for optimality is that the directional derivative 
ated at the point a(O) should be non-negative /lo, ll/ 

max min min min ~Jlt(t,TJO.aW)X 
=ec, X~iii.=M 1e&?O(+(r. LX,, CCW)) !. 

af(r, t, a@))/&z (a - a(@))& < 0 
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problem (3.91, 
of I(c)evalu- 

(3.11) 

where m,,M are the sets of points at which the maxima with respect to x0 and t are reached 
in (3.91, and ~D((x(z rO, a(")) is the set of subdifferentials at the points,,7,~((t,7,r,,a(o), 1) 
is the solution of the Cauchy problem 

lli' = - (af (5 (t, ..rO, a@)), t, a(o))lr?x)* II, (3.12) 

$ (r, 7, x0, u(O), I) = -z 

To solve the optimization problem (3.9) numerically, iterative methods of type (3.5) are 
used, where the vector C (a(')) gives the direction of steepest descent. 

Let us dwell on the method of constructing the vector C(a"') at the i-th iteration. 
To this end, we specify positive numbers ei(n and ei(", defining the accuracy of computing 
the maxima with respect to zo and t. We define the sets 

‘UC'= (Z0 E MM,: max 
G11.. Tl 

@ (J (f, .rO, CP)) > I (&) -El’)} 

a:/ = {T E [lo, T]: Q, (Z (T, IO, a'"')) > max 
t=rt., Tl 

al (Z(L, 50, a"')) -cl")), 

Z0 E Ai:' 

The sets rnf), _?I$' are covered by a dense discrete mesh $"', ~tj (i= 1,2,. ., @, k = 1,-Z. 

.v Qi), by means of which we compute the vector gradients C(kvj) (&)) (j = 1, 2, . . ,, n;“), k = 1, 2, . .., 

Oi) from relations of type (3.6). From the vectors C("*j) (a"') we construct the convex hull 
and find the shortest distance from it to the origin. The point thus found gives the vector 
of shortest descent at the i-th iteration /lo/. To analyse the convergence of the iterative 
process (3.5), the results of /lo, ll/ can be used. The same algorithms can be extended 
without serious modification to systems with variable structure (3;2). 

4. Optimal design of accelerating and focussing systems. we used the above 
algorithms to optimize charged particle beam dynamics in different accelerating systems: 
linear accelerators, electron bunchers , and for the optimal design of power extraction systems 
in multiresonator klystrons etc. 

Instead of writing the unwieldy equations of motion of particles in electromagnetic 
fields, let us dwell on a commonly encountered model 

5' = f (5, t, a), y = A (x, t, a) y, t E IO, Tl, t (0) E MO (4.1) 

where x,y are the vectors of longitudinal and radial coordinates respectively, a is the r- 
dimensional vector ofoptimizedparameters I defining the field structure and the accelerating 
system itself, MO is the spread oftheparticles in longitudinal coordinates, and T is the 
length of the set-up; the vector y has to satisfy the phase constraints 

y (t) E rt = {y: 11,* (t) y I < 1, s = 1, 2, . * .,N) (4.2) 

We assume that the y estimate of the particle-trapping domain in the acceleration mode 
is given in the form Co = {Y: y*By< c*},B is a positive definite matrix. We will formulate 
the problem of maximizing the trapping in the acceleration mode with respect to the radial 
coordinate. 

Using our above criteria of practical stability, the estimate of the trapping,domain is 
given by 

ca< min min min [l,*(t)Q(t,zoz,, a)I,(t)jvl 
te[o. T, x,EM. 11=1, 2, . . . . N (4.3) 

Here, the matrix Q (Lx,, a) is the solution of the Cauchy problem (1.12) under the 
condition that A (t) = A (I (t, XO,.~), t). We have thus arrived at a solution 
min-max parametric optimization 

min max max max 
aEcatao. l-1 %EM.s=I,*,.... N 

I,+ (t) Q V> xot 4 4 0) 

on the trajectories of the matrix differential Eq.(1.12). 
The optimization problem (4.41, (1.12) is obtained for the case when 

the set of initial conditions is given by the matrix B. If B is unknown, 

of the problem of 

(4.4) 

the structure of 
the optimization 
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can be performed with respect to its elements. We then have to satisfy the condition that B 
must be positive definite. A more sensible method is to use our above method of constructing 
the extremal sets of stability and write a problem of type (4.4) /3/. 

To solve problem (4.4) we used iterative algorithms of type (3.5), taking the case when 
the maxima with respect to t,zO,a are not unique. When solving this class of problems we 
found a high rate of convergence of the iterative processes to the point $0 . The modes 
obtained were mainly analysed for optimality from the physical stand-point. It must be said 
that the optimal design of acceleration and focussing systems byourmethod enables the ef- 
ficiency of such devices to be greatly improved /3/. 

The author thanks V.V. Rumyantsev, B.N/ Bublik, and N.F. Karichenko for useful discussions 
and comments. 
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ON A REMARK OF POINCARE* 

L.M. MARKHASHOV 

Descriptions of non-autonomcus mechanical systems by Poincari's equations 
/l/ in the Lagrangian and canonical forms are studied. For systems with 
a Hamiltonian which depends only on the Chetayev variables /2/ and time, 
the existence of a complete setoflinear (non-commuting) first integrals 
is proved. The required conditions imposed on the kinetic energy and 
active*forces are studied. Explicit relations for evaluating the integrals 
by quadratures are obtained. The connection of PoincarG's equations with 
system of hydrodynamic type is noted. The case of the motion of autonomous 
mechanical systems when the Lagrange function, expressed in velocity 
parameters, is independent of the coordinates, was mentioned by Poincar; 
as being of special interest. This case includes the theory of geodesic 
left-invariant metrics in Lie groups (a "generalized rigid body" /3/j. 
The primary element of its construction is a Lie group (configuration 
manifold). Every metric which is defined in it and is invariant under 
the group operations, defines the kinetic energy. In studies not directly 
connected with Poincar&'s remark, the initial object is the mechanical 
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